Emissions and topographic effects on column CO2 variations, with a focus on the Southern California megacity


North America, Central America and the Caribbean
Objective 3


Within the California South Coast Air Basin (SoCAB), XCO2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. XCO2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin‐background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory‐2 (OCO‐2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in XCO2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in XCOacross the SoCAB as well.