Using multi-scale measurements to improve methane emission estimates from oil and gas operations in the Barnett Shale region, Texas

Details

Location
North America, Central America and the Caribbean
Objectives
Objective 2
Year
2015

Description

A growing body of work using varying analytical approaches is yielding estimates of methane emissions from the natural gas supply chain. For shorthand, the resulting emission estimates can be broadly described as top-down or bottom-up. Top-down estimates are determined from measured atmospheric methane enhancements at regional or larger scales. Bottom-up estimates rely on emissions measurements made directly from components or at the site level. (We note that bottom-up emission estimates may rely on data obtained with emission quantification methods sometimes labeled as top-down. Both approaches have strengths and weaknesses. Top-down estimates cannot easily distinguish emissions from specific source types, limiting the development of informed mitigation strategies. Bottom-up estimates are resource intensive, and may not provide sufficient statistical characterization of each source type to accurately estimate total emissions.

 

Previously published large-scale top-down studies report higher methane emissions than estimated by bottom-up emission inventories. Recent reviews of this work suggest that differences may result from (i) incorrect attribution of emissions among methane sources (e.g., fossil vs biogenic sources); (ii) obsolete or incomplete emission inventories, possibly based on emission factors developed using small or unrepresentative samples (including potential bias introduced by sampling only at cooperating facilities) and poor infrastructure activity data (e.g., site or event counts); (iii) failure to account for emissions from uncommon but anomalously high emitting sources (sometimes called superemitters); and (iv) the impact of intermittent, short-duration events. This issue contains 10 articles reporting results from a coordinated, two-week field campaign that examined methane emissions using a diversity of analytical approaches in an effort to address these issues.

 

The Barnett Shale Coordinated Campaign focused on a region of north Texas that includes the Barnett Shale oil and gas fields and the metropolitan area around Dallas and Fort Worth (population ∼7 million). With about 30 000 active wells, the region produced ∼2 trillion cubic feet of natural gas in 2013, or 7% of total U.S. production. As summarized below and in Figure 1, measurements from the campaign, supplemented with two recent national data sets, were used to develop top-down and bottom-up estimates of oil and gas methane emissions in the Barnett Shale region.